1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
use crate::derivatives::pv_prime_r;
use crate::tvm::{npv, xnpv};
use rust_decimal::prelude::*;
use rust_decimal_macros::*;
/// IRR - Internal Rate of Return
///
/// The internal rate of return (IRR) is a metric used in capital budgeting to estimate the profitability of potential investments.
/// The IRR is the interest rate (discount rate) that makes the net present value (NPV) of all cash flows from a particular project equal to zero.
/// IRR calculations rely on the same formula as NPV does, but in this case, the NPV is set to zero and the discount rate is the unknown variable.
/// Similar behavior and usage to the `IRR` function in Excel.
///
/// # Arguments
/// * `cash_flows` - A vector of Decimal values representing the cash flows of the investment
/// * `guess` (optional) - A guess for the IRR, defaults to 0.1. Providing a guess can help the function converge faster
/// * `tolerance` (optional) - The tolerance/maximum error bound for the IRR calculation, defaults to 1e-5 i.e. 0.00001
///
/// # Returns
/// * Result of the IRR calculation
/// * If the calculation fails, it returns a tuple of the last estimated rate and the NPV at that rate
/// * If the NPV is close to zero, you may consider lowering the tolerance or providing a guess at
/// the last estimated rate. Otherwise, there may be no IRR.
///
/// # Example
/// * Cash flows of $-100, $50, $40, $30, $20
/// ```
/// use rust_finprim::rate::irr;
/// use rust_decimal_macros::*;
///
/// let cash_flows = vec![dec!(-100), dec!(50), dec!(40), dec!(30), dec!(20)];
/// irr(&cash_flows, None, None);
/// ```
///
/// # Formula
/// The IRR is calculated by finding the discount rate that makes the net present value (NPV) of all cash flows equal to zero.
/// The formula is:
/// $$NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+IRR)^t} = 0$$
///
/// Where:
/// * \\(CF_t\\) = cash flow at time \\(t\\)
/// * \\(IRR\\) = internal rate of return
///
/// This function uses the Newton-Raphson method to find the root of the NPV formula, maxing out
/// at 20 iterations.
pub fn irr(
cash_flows: &[Decimal],
guess: Option<Decimal>,
tolerance: Option<Decimal>,
) -> Result<Decimal, (Decimal, Decimal)> {
const MAX_ITER: u8 = 20;
let tolerance = tolerance.unwrap_or(dec!(1e-5));
// Newton-Raphson method
let mut rate = guess.unwrap_or(dec!(0.1));
for _ in 0..MAX_ITER {
let npv_value = npv(rate, cash_flows);
if npv_value.abs() < tolerance {
return Ok(rate);
}
let drate: Decimal = cash_flows
.iter()
.enumerate()
.map(|(i, cf)| pv_prime_r(rate, i.into(), *cf))
.sum();
rate -= npv_value / drate;
}
Err((rate, npv(rate, cash_flows)))
}
/// XIRR - Internal Rate of Return for Irregular Cash Flows
///
/// The XIRR function calculates the internal rate of return for a schedule of cash flows that is not necessarily periodic.
///
/// # Arguments
/// * `flow_table` - A slice of tuples representing the cash flows and dates for each period `(cash_flow, date)`
/// where `date` represents the number of days from an arbitrary epoch. The first cash flow
/// is assumed to be the initial investment date, the order of subsequent cash flows does
/// not matter.
/// * `guess` (optional) - A guess for the IRR, defaults to 0.1. Providing a guess can help the function converge faster
/// * `tolerance` (optional) - The tolerance/maximum error bound for the IRR calculation, defaults to 1e-5 i.e. 0.00001
///
/// Most time libraries will provide a method for the number of days from an epoch. For example, in the `chrono` library
/// you can use the `num_days_from_ce` method to get the number of days from the Common Era (CE) epoch, simply convert
/// your date types to an integer representing the number of days from any epoch. Alternatively, you can calculate the
/// time delta in days from an arbitrary epoch, such as the initial investment date.
///
/// Cash flows are discounted assuming a 365-day year.
///
/// # Returns
/// * Result of the IRR calculation
/// * If the calculation fails, it returns a tuple of the last estimated rate and the NPV at that rate
/// * If the NPV is close to zero, you may consider lowering the tolerance or providing a guess at
/// the last estimated rate. Otherwise, there may be no IRR.
///
/// # Example
/// * Cash flows of $-100, $50, $40, $30, $20
/// ```
/// use rust_finprim::rate::xirr;
/// use rust_decimal_macros::*;
///
/// let flow_table = vec![
/// (dec!(-100), 0),
/// (dec!(50), 359),
/// (dec!(40), 400),
/// (dec!(30), 1000),
/// (dec!(20), 2000),
/// ];
/// xirr(&flow_table, None, None);
pub fn xirr(
flow_table: &[(Decimal, i32)],
guess: Option<Decimal>,
tolerance: Option<Decimal>,
) -> Result<Decimal, (Decimal, Decimal)> {
let tolerance = tolerance.unwrap_or(dec!(1e-5));
const MAX_ITER: u8 = 20;
// First date should be 0 (initial investment) and the rest should be difference from the initial date
let init_date = flow_table.first().unwrap().1;
let mut flow_table = flow_table.to_vec();
for (_, date) in flow_table.iter_mut() {
*date -= init_date;
}
let mut rate = guess.unwrap_or(dec!(0.1));
for _ in 0..MAX_ITER {
let npv_value = xnpv(rate, &flow_table);
if npv_value.abs() < tolerance {
return Ok(rate);
}
let drate: Decimal = flow_table
.iter()
.map(|(cf, date)| pv_prime_r(rate, Decimal::from_i32(*date).unwrap() / dec!(365), *cf))
.sum();
rate -= npv_value / drate;
}
Err((rate, xnpv(rate, &flow_table)))
}
#[cfg(test)]
mod tests {
#[cfg(not(feature = "std"))]
extern crate std;
use super::*;
#[cfg(not(feature = "std"))]
use std::prelude::v1::*;
#[cfg(not(feature = "std"))]
use std::{assert, vec};
#[test]
fn test_irr() {
let cash_flows = vec![dec!(-100), dec!(50), dec!(40), dec!(30), dec!(1000)];
let result = irr(&cash_flows, None, Some(dec!(1e-20)));
if let Err((rate, npv)) = result {
assert!(
(npv).abs() < dec!(1e-20),
"Failed to converge at 1e-20 precision. Last rate: {}, NPV: {}",
rate,
npv
);
} else {
assert!(true);
}
}
#[test]
fn test_xirr() {
let flow_table = vec![
(dec!(-100), 0),
(dec!(50), 359),
(dec!(40), 400),
(dec!(30), 1000),
(dec!(20), 2000),
];
let xirr = xirr(&flow_table, None, Some(dec!(1e-20)));
if let Err((rate, npv)) = xirr {
assert!(
(npv).abs() < dec!(1e-20),
"Failed to converge at 1e-20 precision. Last rate: {}, NPV: {}",
rate,
npv
);
} else {
let expected = dec!(0.20084);
assert!(
(xirr.unwrap() - expected).abs() < dec!(1e-5),
"Failed on case: {}. Expected: {}, Result: {}",
"Cash flows of -100, 50, 40, 30, 20",
expected,
xirr.unwrap()
);
}
}
}