1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
use crate::{ONE, ZERO};
use rust_decimal::prelude::*;
use rust_decimal_macros::*;

/// PV - Present Value
///
/// A general present value calculation, similar to the Excel `PV` function. Commonly used
/// for bond pricing and annuity calculations.
/// The `due` parameter expresses whether the annuity type is an ordinary annuity (false and the default) or an annuity due (true),
/// Excel provides this parameter as `type` with 0 for ordinary annuity and 1 for annuity due.
///
/// The present value (PV) is the current value of a future sum of money or cash flow given a
/// specified rate of return.
///
/// # Arguments
/// * `rate` - The interest rate per period
/// * `nper` - The number of compounding periods
/// * `pmt` - The payment amount per period (negative for cash outflows)
/// * `fv` (optional) - The future value
/// * `due` (optional) - The timing of the payment (false = end of period, true = beginning of period), default is false
/// (ordinary annuity)
///
/// At least one of `pmt` or `fv` should be non-zero.
///
/// # Returns
/// The present value (PV)
///
/// # Example
/// 10 Year bond with 3% YTM, $1000 future value, and 5% coupon rate (paid annually)
/// * 5% interest rate
/// * 10 compounding periods
/// * $50 payment per period (5% of $1000)
/// ```
/// use rust_finprim::tvm::pv;
/// use rust_decimal_macros::*;
///
/// let rate = dec!(0.05); let nper = dec!(10); let pmt = dec!(-50); let fv = dec!(1000);
/// pv(rate, nper, pmt, Some(fv), None);
/// ```
pub fn pv(rate: Decimal, nper: Decimal, pmt: Decimal, fv: Option<Decimal>, due: Option<bool>) -> Decimal {
    let fv: Decimal = fv.unwrap_or(ZERO);
    let due = due.unwrap_or(false);

    let mut pv: Decimal;
    if rate == ZERO {
        // If the rate is zero, the nth_power should be 1 (since (1 + 0)^n = 1)
        // The present value calculation when rate is zero is simplified
        pv = fv + (pmt * nper);
    } else {
        let nth_power = (ONE + rate).powd(-nper);
        let fv = fv * nth_power;

        if due {
            pv = pmt * (ONE - nth_power) / rate * (ONE + rate) + fv;
        } else {
            pv = pmt * (ONE - nth_power) / rate + fv;
        }
    }
    // Present value negative since it represents a cash outflow
    pv.set_sign_negative(true);
    pv
}

/// NPV - Net Present Value
///
/// The net present value (NPV) is the difference between the present value of cash inflows and the present value of cash outflows over a period of time.
/// NPV is used in capital budgeting to analyze the profitability of an investment or project.
/// The NPV is calculated by discounting all cash flows to the present value using a specified discount rate.
/// If the NPV is positive, the investment is considered profitable. If the NPV is negative, the investment is considered unprofitable.
/// Similar to the Excel `NPV` function, with the main difference is that this implementation
/// assumes the first cash flow is at time value 0 (initial investment).
///
/// # Arguments
/// * `rate` - The discount rate per period
/// * `cash_flows` - A slice of Decimal values representing the cash flows of the investment,
/// note that the first cash flow is assumed to be at time value 0 (initial investment)
///
/// # Returns
/// * The net present value (NPV)
///
/// # Example
/// * 5% discount rate
/// * Cash flows of $-100, $50, $40, $30, $20
/// ```
/// use rust_decimal_macros::*;
/// use rust_finprim::tvm::npv;
///
/// let rate = dec!(0.05);
/// let cash_flows = vec![dec!(-100), dec!(50), dec!(40), dec!(30), dec!(20)];
/// npv(rate, &cash_flows);
/// ```
/// # Formula
/// The NPV is calculated by discounting all cash flows to the present value using a specified discount rate.
/// The formula is:
/// $$NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+r)^t}$$
/// Where:
/// * \\(CF_t\\) = cash flow at time \\(t\\)
/// * \\(r\\) = discount rate
pub fn npv(rate: Decimal, cash_flows: &[Decimal]) -> Decimal {
    cash_flows
        .iter()
        .enumerate()
        .map(|(t, cf)| *cf / (ONE + rate).powi(t as i64))
        .sum()
}

/// NPV Differing Rates - Net Present Value with differing discount rates
///
/// The net present value (NPV) is the difference between the present value of cash inflows and the present value of cash outflows over a period of time.
/// NPV is used in capital budgeting to analyze the profitability of an investment or project.
/// The NPV is calculated by discounting all cash flows to the present value using a specified discount rate.
/// If the NPV is positive, the investment is considered profitable. If the NPV is negative, the investment is considered unprofitable.
/// This function allows for differing discount rates for each cash flow.
///
/// # Arguments
/// * `flow_table` - A slice of tuples representing the cash flows and discount rates for each period `(cash_flow, discount_rate)`,
/// note that the first cash flow is assumed to be at time value 0 (initial investment)
///
/// # Returns
/// * The net present value (NPV)
///
/// # Example
/// * Cash flows of $-100, $50, $40, $30, $20
/// * Discount rates of 5%, 6%, 7%, 8%, 9%
/// ```
/// use rust_decimal_macros::*;
/// use rust_finprim::tvm::npv_differing_rates;
///
/// let flow_table = vec![
///     (dec!(-100), dec!(0.05)),
///     (dec!(50), dec!(0.06)),
///     (dec!(40), dec!(0.07)),
///     (dec!(30), dec!(0.08)),
///     (dec!(20), dec!(0.09)),
/// ];
/// npv_differing_rates(&flow_table);
/// ```
///
/// # Formula
/// The NPV is calculated by discounting all cash flows to the present value using a specified discount rate.
/// $$NPV = \sum_{t=0}^{n} \frac{CF_t}{(1+r_t)^t}$$
/// Where:
/// * \\(CF_t\\) = cash flow at time \\(t\\)
/// * \\(r_t\\) = discount rate at time \\(t\\)
pub fn npv_differing_rates(flow_table: &[(Decimal, Decimal)]) -> Decimal {
    flow_table
        .iter()
        .enumerate()
        .map(|(t, (cf, rate))| *cf / (ONE + *rate).powi(t as i64))
        .sum()
}

/// XNPV - Net Present Value for irregular cash flows
///
/// The XNPV function calculates the net present value of a series of cash flows that are not necessarily periodic.
///
/// # Arguments
/// * `rate` - The discount rate
/// * `flow_table` - A slice of tuples representing the cash flows and dates for each period `(cash_flow, date)`
/// where `date` represents the number of days from an arbitrary epoch. The first cash flow
/// is assumed to be the initial investment date, the order of subsequent cash flows does
/// not matter.
///
/// Most time libraries will provide a method yielding the number of days from an epoch. For example, in the `chrono` library
/// you can use the `num_days_from_ce` method to get the number of days from the Common Era (CE) epoch, simply convert
/// your date types to an integer representing the number of days from any epoch. Alternatively, you can calculate the
/// time delta in days from an arbitrary epoch, such as the initial investment date.
///
/// Cash flows are discounted assuming a 365-day year.
///
/// # Returns
/// * The net present value (NPV)
///
/// # Example
/// * 5% discount rate
/// * Cash flows of $-100, $50, $40, $30, $20
/// * Dates of 0, 365, 420, 1360, 1460
///
/// ```
/// use rust_decimal_macros::*;
/// use rust_finprim::tvm::xnpv;
///
/// let rate = dec!(0.05);
/// let flows_table = vec![
///    (dec!(-100), 0),
///    (dec!(50), 365),
///    (dec!(40), 420),
///    (dec!(30), 1360),
///    (dec!(20), 1460),
/// ];
/// xnpv(rate, &flows_table);
pub fn xnpv(rate: Decimal, flow_table: &[(Decimal, i32)]) -> Decimal {
    // First date should be 0 (initial investment) and the rest should be difference from the initial date
    let init_date = flow_table.first().unwrap().1;
    let mut flows_table = flow_table.to_vec();
    for (_, date) in flows_table.iter_mut() {
        *date -= init_date;
    }

    flows_table
        .iter()
        .map(|(cf, date)| {
            let years = Decimal::from_i32(*date).unwrap() / dec!(365);
            *cf / (ONE + rate).powd(years)
        })
        .sum()
}

#[cfg(test)]
mod tests {
    #[cfg(not(feature = "std"))]
    extern crate std;
    use super::*;
    #[cfg(not(feature = "std"))]
    use std::prelude::v1::*;
    #[cfg(not(feature = "std"))]
    use std::{assert, vec};

    #[test]
    fn test_xnpv() {
        let rate = dec!(0.05);
        let flows_table = vec![
            (dec!(-100), 0),
            (dec!(50), 365),
            (dec!(40), 730),
            (dec!(30), 1095),
            (dec!(20), 1460),
        ];

        let result = xnpv(rate, &flows_table);
        let expected = dec!(26.26940);
        assert!(
            (result - expected).abs() < dec!(1e-5),
            "Failed on case: {}. Expected: {}, Result: {}",
            "5% discount rate, cash flows of -100, 50, 40, 30, 20",
            expected,
            result
        );
    }

    #[test]
    fn test_pv() {
        struct TestCase {
            rate: Decimal,
            nper: Decimal,
            pmt: Decimal,
            fv: Option<Decimal>,
            due: Option<bool>,
            expected: Decimal,
            description: &'static str,
        }
        impl TestCase {
            fn new(
                rate: f64,
                nper: f64,
                pmt: f64,
                fv: Option<f64>,
                due: Option<bool>,
                expected: f64,
                description: &'static str,
            ) -> TestCase {
                TestCase {
                    rate: Decimal::from_f64(rate).unwrap(),
                    nper: Decimal::from_f64(nper).unwrap(),
                    pmt: Decimal::from_f64(pmt).unwrap(),
                    fv: fv.map(Decimal::from_f64).unwrap_or(None),
                    due,
                    expected: Decimal::from_f64(expected).unwrap(),
                    description,
                }
            }
        }

        let cases = [
            TestCase::new(
                0.05,
                10.0,
                100.0,
                None,
                None,
                -772.17349,
                "Standard case with 5% rate, 10 periods, and $100 pmt",
            ),
            TestCase::new(
                0.05,
                10.0,
                100.0,
                None,
                Some(true),
                -810.78217,
                "Payment at the beg of period should result in higher present value",
            ),
            TestCase::new(0.0, 10.0, -100.0, None, None, -1000.0, "Zero interest rate no growth"),
            TestCase::new(
                0.05,
                10.0,
                100.0,
                Some(1000.0),
                None,
                -1386.08675,
                "Bond with 5% rate, 10 periods, 10% coupon, and $1000 future value",
            ),
            TestCase::new(
                0.05,
                10.0,
                0.0,
                Some(2000.0),
                None,
                -1227.82651,
                "No cash flows, just a future pay out",
            ),
        ];

        for case in &cases {
            let calculated_pv = pv(case.rate, case.nper, case.pmt, case.fv, case.due);
            assert!(
                (calculated_pv - case.expected).abs() < dec!(1e-5),
                "Failed on case: {}. Expected {}, got {}",
                case.description,
                case.expected,
                calculated_pv
            );
        }
    }

    #[test]
    fn test_npv() {
        struct TestCase {
            rate: Decimal,
            cash_flows: Vec<Decimal>,
            expected: Decimal,
            description: &'static str,
        }
        impl TestCase {
            fn new(rate: f64, cash_flows: Vec<f64>, expected: f64, description: &'static str) -> TestCase {
                TestCase {
                    rate: Decimal::from_f64(rate).unwrap(),
                    cash_flows: cash_flows.iter().map(|&cf| Decimal::from_f64(cf).unwrap()).collect(),
                    expected: Decimal::from_f64(expected).unwrap(),
                    description,
                }
            }
        }

        let cases = [
            TestCase::new(
                0.05,
                vec![-100.0, 50.0, 40.0, 30.0, 20.0],
                26.26940,
                "Standard case with 5% rate and cash flows of -100, 50, 40, 30, 20",
            ),
            TestCase::new(
                0.05,
                vec![100.0, 50.0, 40.0, 30.0, 20.0],
                226.26940,
                "All positive cash flows",
            ),
            TestCase::new(
                0.05,
                vec![-100.0, 50.0, 40.0, 30.0, 20.0, 1000.0],
                809.79557,
                "Additional future cash flow should increase NPV",
            ),
        ];

        for case in &cases {
            let calculated_npv = npv(case.rate, &case.cash_flows);
            assert!(
                (calculated_npv - case.expected).abs() < dec!(1e-5),
                "Failed on case: {}. Expected {}, got {}",
                case.description,
                case.expected,
                calculated_npv
            );
        }
    }

    #[test]
    fn test_npv_differing_rates() {
        struct TestCase {
            flow_table: Vec<(Decimal, Decimal)>,
            expected: Decimal,
            description: &'static str,
        }
        impl TestCase {
            fn new(rates: Vec<f64>, cash_flows: Vec<f64>, expected: f64, description: &'static str) -> TestCase {
                let rates: Vec<Decimal> = rates.iter().map(|&r| Decimal::from_f64(r).unwrap()).collect();
                let cash_flows: Vec<Decimal> = cash_flows.iter().map(|&cf| Decimal::from_f64(cf).unwrap()).collect();
                let flow_table = cash_flows.iter().zip(rates.iter()).map(|(&cf, &r)| (cf, r)).collect();
                TestCase {
                    flow_table,
                    expected: Decimal::from_f64(expected).unwrap(),
                    description,
                }
            }
        }

        let cases = [
            TestCase::new(
                vec![0.05, 0.06, 0.07, 0.08, 0.09],
                vec![-100.0, 50.0, 40.0, 30.0, 20.0],
                20.09083,
                "Increasing rate and cash flows of -100, 50, 40, 30, 20",
            ),
            TestCase::new(
                vec![0.05, 0.06, 0.07, 0.08, 0.09],
                vec![100.0, 50.0, 40.0, 30.0, 20.0],
                220.09083,
                "All positive cash flows",
            ),
            TestCase::new(
                vec![0.05, 0.06, 0.07, 0.08, 0.09, 0.1],
                vec![-100.0, 50.0, 40.0, 30.0, 20.0, 1000.0],
                641.01215,
                "Additional future cash flow should increase NPV",
            ),
        ];

        for case in &cases {
            let calculated_npv = npv_differing_rates(&case.flow_table);
            assert!(
                (calculated_npv - case.expected).abs() < dec!(1e-5),
                "Failed on case: {}. Expected {}, got {}",
                case.description,
                case.expected,
                calculated_npv
            );
        }
    }
}